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Abstract—In this paper, a novel multiresolution algorithm for
registering multimodal images, using an adaptive Monte Carlo
scheme is presented. At each iteration, random solution candi-
dates are generated from a multidimensional solution space of
possible geometric transformations, using an adaptive sampling
approach. The generated solution candidates are evaluated based
on the Pearson type-VII error between the phase moments of the
images to determine the solution candidate with the lowest error
residual. The multidimensional sampling distribution is refined
with each iteration to produce increasingly more plausible solu-
tion candidates for the optimal alignment between the images. The
proposed algorithm is efficient, robust to local optima, and does
not require manual initialization or prior information about the
images. Experimental results based on various real-world medi-
cal images show that the proposed method is capable of achieving
higher registration accuracy than existing multimodal registration
algorithms for situations, where little to no overlapping regions
exist.

Index Terms—Adaptive Monte Carlo, image registration, mul-
timodal, Pearson error, phase.

I. INTRODUCTION

IMAGE registration is the process of finding the optimal ge-
ometric transformation that aligns images of the same scene

acquired under different conditions (e.g., time, view angle, sen-
sor modality, etc.). Image registration plays an important role in
various biomedical applications, such as medical image super-
resolution [1], [2], medical image fusion [3], disease diagno-
sis [4], and computer-assisted surgery [5]. Of particular interest
is multimodal image registration, where the underlying goal is
to find the optimal geometric transformation that aligns images
acquired, using different imaging modalities [e.g., magnetic
resonance imaging (MRI)/computed tomography (CT)/positron
emission tomography (PET)]. Traditionally, multimodal image
registration required the manual selection of control point pairs
between the images being registered, which are used to estimate
the transformation that aligns the images. This manual selection
of control point pairs is very time-consuming and laborious.
Therefore, methods that register images acquired, using differ-
ent modalities in an automated manner, is desired.

Multimodal image registration is a very challenging prob-
lem for many reasons. The same scene acquired by different
imaging modalities are represented by different intensity val-
ues. This makes it very difficult to align images based on their
intensity values. This disparity in intensity mappings is further
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complicated by the presence of local image nonuniformities
(e.g., static field and RF nonhomogeneities for MRI [6], [7])
and noise. Furthermore, such disparities can result in local min-
ima along the convergence plane if evaluated in a direct manner,
thereby affecting the ability of iterative optimization techniques,
such as conjugate gradient [8] and Nelder–Mead simplex [9] to
converge to the global optima. Finally, solving the multimodal
registration problem can be very computationally expensive,
particularly for large images. Therefore, multimodal image reg-
istration methods that can address all of these issues are highly
desired.

The main contribution of this paper is a novel approach to the
problem of registering images from different modalities, using
an adaptive Monte Carlo scheme. The proposed method utilizes
an adaptive sampling scheme to draw increasingly more plausi-
ble solution candidates from a multidimensional solution space.
Solution candidate evaluation is performed based on the Pear-
son type-VII error between the phase moments of the images to
determine the alignment between the images. To the best of the
author’s knowledge, there are currently no methods that utilize
the concept of adaptive Monte Carlo method for the purpose of
multimodal image registration. The key motivation of using an
adaptive Monte Carlo method for the purpose of multimodal im-
age registration is that it allows for efficient optimization while
avoiding convergence issues under situations characterized by
many local optima along the convergence plane and small cost
gradients toward the global optima.

The paper is organized as follows. Previous work in multi-
modal registration is discussed in Section II. The theory under-
lying the proposed method is described in detail in Section III.
The proposed method is presented in Section IV. The testing
methods and experimental results are discussed in Section V.
Finally, conclusions are drawn and future work is discussed in
Section VI.

II. PREVIOUS WORK

A large number of algorithms have been proposed for the
purpose of registration images acquired, using different imaging
modalities. Amongst the most popular multimodal image reg-
istration techniques are mutual information and entropy-based
methods [10]–[15]. The underlying goal of entropy-based meth-
ods is to minimize the joint intensity entropy between the im-
ages being registered. These methods take advantage of the fact
that correctly registered images correspond to tightly packed
joint distributions and the transformation with minimum joint
intensity entropy should theoretically be the optimal alignment.
The main advantage of entropy-based methods is that it al-
lows images acquired, using different imaging modalities to be
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compared in a direct manner. Currently, entropy-based methods
have been shown to be very effective in multimodal registration,
and are considered to be state-of-the-art.

There are several important drawbacks to entropy-based
methods. First, entropy-based methods are typically undercon-
strained with respect to intensity relationships. As such, the
convergence planes associated with entropy-based methods pos-
sess high nonmonotonicity with many local optima [16]. This
is problematic since most entropy-based methods utilize iter-
ative optimization methods to solve for the optimal alignment
between images, which rely on the monotonicity of the conver-
gence plane. Furthermore, entropy-based methods require the
calculation of marginal and joint entropies, which is computa-
tionally expensive to perform.

Another popular group of multimodal image registration tech-
niques are feature-based methods [17]–[22]. In feature-based
methods, the images are transformed into a common feature
space prior to cost evaluation. Therefore, such methods attempt
to find image correspondences in an indirect manner by find-
ing correspondences between extracted features that exist in a
common feature space. Features used in such methods include
intensity gradient information [17], [18], local frequency infor-
mation [19]–[21], and shape properties [23]. There are several
important advantages to the use of feature-based methods. First,
since images are converted to a common feature space prior to
comparison, objective functions that are more constrained than
those used in entropy-based methods with respect to interimage
feature relationships can be used. As a result, the convergence
planes associated with feature-based methods typically possess
higher monotonicity with fewer local optima. Second, feature-
based methods allow more computationally efficient objective
functions, such as sum of squared distances and cross correlation
to be utilized. In particular, efficient techniques for evaluating
such objective functions exhaustively for all possible transla-
tions and rotations on a pixel level have been proposed [18].

There are several important drawbacks to feature-based meth-
ods that need to be addressed. First, while methods exist for per-
forming objective function evaluation exhaustively on a pixel
level for simple transformations, this type of exhaustive evalu-
ation becomes intractable to perform on a subpixel level and/or
more complex transformations due to high computational costs.
Second, while the convergence plane for feature-based meth-
ods are generally more monotonic than entropy-based methods,
whether the global optima corresponds to the optimal alignment
depends heavily on the selection of appropriate features as well
as objective functions.

Other recent techniques include correlation ratio [24] and
regression-based methods [25], [26]. Such methods make the
assumption that the relationship between intensity values from
the images being registered can be represented as a function
(e.g., polynomials [24], [26] and piecewise linear [25]). One
issue with such methods is that the functional assumption is
often not true and are not easily customizable to handle scenarios
with different intensity relationships [27].

In addition to the specific problems associated with each
group of multimodal image registration methods, all of the
aforementioned methods encounter difficulties when faced with

situations characterized by: 1) large misregistrations; and 2) lit-
tle to no initial region overlap between the images. Methods that
utilize iterative optimization methods, such as gradient descent,
conjugate gradient [8], Nelder–Mead simplex [9], Levenberg–
Marquardt method, Powell’s method, and quadratic program-
ming are often unable to converge under such situations due to
local optima along the convergence plane and small cost gradi-
ents toward the global optima (i.e., moving toward the global
optima yields little to no decrease in cost), even when multires-
olution methods are used. Multistart methods attempt to reduce
the effects of local minima on the convergence to the global
optima by initializing local optimizations at multiple starting
points. However, this can become computationally expensive
for large search spaces where many local optimizations must be
performed at different starting points, and choosing such start-
ing points can also be a challenging task. Methods that utilize
exhaustive search over all possible transformations are able to
avoid the issue of local optima along the convergence plane,
but at the cost of high-computational complexity that is only
tractable for simple transformations and pixel-level accuracy.
The goal of the proposed study is to introduce a feature-based
image registration method that addresses the convergence and
computational complexity issues associated with large misreg-
istrations as well as situations where there is little to no initial
region overlap between the images through the use of an adap-
tive Monte Carlo scheme.

It is important to distinguish the proposed adaptive Monte
Carlo scheme from other image registration schemes that utilize
stochastic sampling concepts, particularly the multistart regis-
tration method proposed by Song et al. [15] and the particle
filter-based approach proposed by Florin et al. [22]. The under-
lying goal of the registration method proposed by Song et al. is
to identify several good starting points from which to initialize
a set of local optimizations. The selection of desirable starting
points that would lead to a correct solution during the local opti-
mization processes was achieved by Song et al. through a prior
learning strategy, which constructs nonparametric prior mod-
els for each transform parameter, using stochastic sampling. As
such, the use of stochastic sampling in the method proposed by
Song et al., is in the prior learning process and not in the iter-
ative optimization process. This use of stochastic sampling is
fundamentally very different from the proposed method, which
utilizes stochastic sampling in the iterative optimization pro-
cess and not in the learning process. As such, the proposed
method can be initialized at an arbitrary starting point with-
out affecting convergence to a good solution. This divergence
of ideas lead to very different optimization approaches as well
as very different learning models. Since the fundamental im-
provement of the method proposed by Song et al. over existing
multistart methods, is in selecting good starting points based on
learnt priors, a nonparametric model is crucial for the success
of such an algorithm. However, since the proposed method is a
single-start method that attempts to converge to a single good
solution through a sequence of stochastically sampled solution
candidates, an adaptive parametric model is more suitable for
guiding the stochastic sampling process toward the single good
solution. Similarly, the method proposed by Florin et al. [22]
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utilizes stochastic sampling in the learning stage, where the
Bayesian posterior probability density function is estimated at
each iteration through stochastic sampling, and then, used to
compute a cost function gradient. This is fundamentally dif-
ferent from the proposed method, which does not rely on cost
function gradients in finding the solution. Furthermore, the re-
peated distribution reestimation process required for the method
proposed by Florin et al. is very computationally expensive.

III. THEORY

Prior to explaining the proposed method, it is important to first
explain the theory behind the proposed method. First, the pro-
posed adaptive Monte Carlo scheme is described and explained
in detail to justify the use of such a method for multimodal image
registration. Finally, the proposed candidate solution evaluation
scheme is presented.

A. Adaptive Monte Carlo Method

Suppose we wish to register two different images f and g
acquired, using different imaging modalities. The optimal trans-
formation T̂ that bring f and g into alignment can be formulated
as an optimization problem

T̂ = arg min
T

[C (f (T (x)) , g (x))] (1)

where x represents a point in image space and C is the objective
function that evaluates the dissimilarity between the images.
Based on this formulation, the goal is to find a feasible solution
from the solution space of possible geometric transformations
that minimizes the objective function.

Many iterative optimization schemes have been proposed for
finding the optimal solution [8], [9], [28], [29]. Such methods
work based on the assumption that the convergence plane is
monotonic in nature. However, this assumption of monotonicity
is often not the case, particularly for situations characterized
by high-dimensional solution spaces. Therefore, such methods
often become trapped in local optima along the convergence
plane. This issue is especially problematic in situations, where
characterized by large misregistration and little region overlap
between the images. In such cases, moving toward the global
optima yields little to no decrease in cost, and hence, iterative
methods would fail to find the global optima in such cases. A
method to alleviate this problem is to evaluate all feasible solu-
tions in the solution space. While methods exist to perform such
exhaustive solution evaluation efficiently for low-dimensional
solution spaces on a pixel level [18], it is intractable to eval-
uate T̂ in such a manner for high-dimensional solution spaces
or on a subpixel level from a computational perspective. For
example, to exhaustively evaluate solutions from the solution
space of all possible integer 2-D translations and rotations for
two 256 × 256 images would require the evaluation of over 23
million solution candidates.

To address this important issue, we propose that we instead
generate random solution candidates for T̂ from the solution
space of possible geometric transformations in an efficient man-
ner, using a novel adaptive Monte Carlo scheme. Let us con-

sider a m-D random field S representing the solution space of
all possible geometric transformations as defined by m model
parameters, T be a random variable in S, and p be an arbitrary
probability density function on S. If we were to take n random
solution candidates T1 , . . . , Tn based on p, the Monte Carlo
estimate of T̂ can be defined as follows:

T̂ = arg min
T ∈{T1 ,...,Tn }

[C (f (T (x)) , g (x))] . (2)

There are several advantages to the use of Monte Carlo
method for the purpose of multimodal image registration. First,
it avoid the issues associated with local optima along the con-
vergence plane faced by iterative optimization methods, since it
does not rely on local cost gradients to guide it toward the global
optima. Therefore, such a scheme would not require manual
initialization since the initial alignment of the images does not
affect its ability to determine the global optima. Second, the
use of Monte Carlo methods allows optimization problems that
are infeasible to evaluate exhaustively (e.g., problems involving
high-dimensional solution spaces) to be solved in an efficient
manner.

One major problem with this “naive” Monte Carlo (NMC)
approach to image registration is that it generates too many
solution candidates that are either infeasible or far from the de-
sired global optima. This can lead to an unnecessary increase in
computational overhead from too many irrelevant solution can-
didates being evaluated. The reason that the conventional Monte
Carlo method produces so many irrelevant solution candidates
is that it generates solution candidates from the solution space
based on an arbitrary probability density function p. Therefore,
the probability density function used to generate the solution
candidates may differ significantly from that of solution candi-
dates that are more plausible to be the global optima. A partic-
ularly effective technique for addressing the issue of solution
candidate irrelevancy is adaptive sampling, where the underly-
ing concept is that random variables with greater impact on the
estimate (in this case, solution candidates T1 , . . . , Tn that are
more plausible to be the global optima T̂ ) should be sampled
more frequently. A sampling density function p∗ is used to em-
phasize important regions in the solution space in an attempt to
significantly reduce irrelevant solution candidates and improve
computational performance.

The fundamental issue associated with adaptive sampling
is the selection of sampling density function p∗, which is critical
to the computational performance of the Monte Carlo method. In
the case of multimodal image registration, the probability den-
sity that describes whether a given solution candidate is close
to the desired solution is generally unknown. As such, it is very
difficult to select a good sampling density for the image reg-
istration problem, particularly in situations where the solution
exists in a high-dimensional solution space. To address this is-
sue, we propose an adaptive sampling scheme, where an initial
sampling density is corrected and refined with each iteration to
produce increasingly more plausible solution candidates for the
optimal alignment.

The proposed adaptive sampling scheme can be described as
follows. Let T = (t1 , t2 , . . . , tn ) be a solution candidate in the
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n-dimensional solution space of possible transformations for
2-D image alignment, where ti is the ith parameter of the trans-
formation model, and t1 and t2 correspond to the translation
along the x- and y-axis, respectively. First, an initial sampling
density p1

∗ is used to generate an initial set of random solu-
tion candidates T 1

1 , . . . , T 1
n . The initial sampling density p1

∗ is
defined as follows:

p1
∗(t1) =

1
σ1

√
2π

exp

(
− (t1 − m1)

2

2σ2
1

)
, tmax

1 > t1 > tmin
1

(3)

p1
∗(t2) =

1
σ2

√
2π

exp

(
− (t2 − m2)

2

2σ2
2

)
, tmax

2 > t2 > tmin
2

(4)

p1
∗(ti) =

1
tmax
i − tmin

i

, tmax
i > ti > tmin

i and i > 2 (5)

where σ1 and σ2 are the base standard deviations of p∗ for t1 and
t2 , respectively, m1 and m2 represent the translation along the
x- and y-axis, respectively that aligns the center of masses of f
and g, and tmin

i and tmax
i represent the minimum and maximum

allowable values for parameter ti . Each solution candidate is
then tested using the objective function C to determine the
solution T̂ k−1 that minimizes the objective function from the
set of solution candidates. At each iteration k, the sampling
density pk

∗ is adaptively refined based on the cost gradient ∆Ck

between iteration k − 1 and k − 2, and solution candidate T̂ k−1

as follows:

pk
∗ (ti) =

1
σi (∆Ck/∆C3)

√
2π

exp
(
− (ti − t̂k−1

i )
2(σi(∆Ck/∆C3))2

)
,

(6)

tmax
i > ti > tmin

i (7)

where σi is the base standard deviations of p∗ for ti and can be
defined as follows:

σi =
tmax
i − tmin

i

4
, (8)

t̂k−1
i is the ith parameter of T̂ k−1 , and ∆Ck and ∆C2 are the

cost gradients at iterations k and 3 as defined as follows:

∆Ck = C(T̂ k−1) − C(T̂ k−2) (9)

∆C3 = C(T̂ 2) − C(T̂ 1). (10)

It can be observed from (6) that at each iteration, the mean and
variance of sampling density p∗ are refined relative to the param-
eters of the optimal solution from the previous iteration T̂ k−1

and the reduction in cost between the previous two iterations
∆Ck . This adaptive sampling density estimation is based on the
theory that as the algorithm converges to the global optima, the
most plausible solutions for the optimization problem should be
found in regions in the solution space that is increasingly closer
to the previous best solution. Based on this assumption, a good
solution candidate distribution model would intuitively be the
Gaussian distribution model, where the sampling density of so-

lution candidates is concentrated near the previous best solution,
and steadily declines as we move away from the previous best
solution. The main advantage to the proposed adaptive sampling
scheme is that no prior information is needed about the images
beforehand to select an appropriate sampling density for gen-
erating plausible solution candidates from the solution space.
Therefore, the proposed scheme encourages solution locality
while still allowing for the possibility of solution candidates
that are far from the previous solution.

B. Solution Candidate Evaluation

For each solution candidate T generated by the adaptive sam-
pling scheme, it is necessary to test the solution candidate, us-
ing an objective function C to determine the associated cost.
Therefore, registration accuracy depends heavily on the objec-
tive function being used. To allow for well-constrained similarity
evaluation between images acquired under different modalities,
we propose that each generated solution candidate is evaluated,
using an objective function based on the Pearson type-VII [30]
error between the phase moments of the images being regis-
tered. The proposed solution candidate evaluation process can
be described in the following manner. Upon initialization, the
phase moments ρ associated with each point in f and g are cal-
culated based on the iterative estimation scheme we previously
proposed in [31], which was shown to be highly robust to im-
age nonuniformities and noise. Given an image f0 , the initial
local phase coherence estimate P0 at orientation θ is obtained
at iteration t = 0, using the following expression [32]:

P (x, θ) =
∑

n W (x, θ) �An (x, θ) ∆Φ(x, θ) − T �∑
n An (x, θ) + ε

(11)

∆Φ(x, θ) = cos(φn (x, θ) − φ̄(x, θ))

− |sin(φn (x, θ) − φ̄(x, θ))| (12)

where W is the frequency-spread weighting factor (coherence
across a wide frequency spread is weighted more than coher-
ence across a narrow frequency spread), φ̄ is the weighted mean
phase, T is a noise threshold, and ε is a small constant used to
avoid division by zero. The parameters used during implemen-
tation were those described in [32].

At each iteration t, phase moments ρt are computed based on
Pt−1 as follows:

ρt(x) =
1
2

∑
θ

Pt−1(x, θ)2

+
1
2

[
4
(∑

θ

(Pt−1(x, θ) sin(θ))(Pt−1(x, θ) cos(θ))
)2

+
( ∑

θ

[(Pt−1(x, θ) cos(θ))2

− (Pt−1(x, θ) sin(θ))2 ]
)2]1/2

. (13)
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A new estimate of ft is then computed based on a moment-
adaptive bilateral estimation scheme

ft(x) =

∑
ψ w

(
x, ψ, ρt (x)

)
ft−1 (ψ)∑

ψ w
(
x, ψ, ρt(x)

) (14)

where ψ is a local neighborhood around x, and the estimation
weighting function w consists of a spatial weighting function
ws , and an amplitudinal weighting function wa

w(x, ψ,�t(x)) = wa(x, ψ,�t(x))ws(x, ψ,�t(x)) (15)

ws(x, ψ,�t(x)) = e−1/2(‖x−ψ‖/(σs (�t (x))))2
(16)

wa(x, ψ,�t(x)) = e−1/2(‖I (x)−I (ψ )‖/(σa (�t (x))))2
. (17)

The estimated image ft becomes the basis for estimating
phase coherence Pt+1 during the next iteration. The iterative
estimation scheme is performed for f and g to determine the
phase moments ρf and ρg . The parameters used during imple-
mentation were those described in [31].

To evaluate the cost associated with solution candidate T , the
proposed objective function is defined as the cumulative Pearson
type-VII [30] error between the phase moments ρf and ρg

C(f(T (x), g(x)) =
∑

x

ln(1 + (ρf (T (x)) − ρg (x))2)1/2 .

(18)
One of the main advantages of using the Pearson type-VII

error metric is that it is highly robust to outliers. Common meth-
ods for evaluating error, such as Manhattan and quadratic error
metrics are highly sensitive to outliers. To illustrate this, the in-
fluence of outliers on an error metric can be studied based on its
derivative [33]. For example, the derivative of the quadratic error
metric e2 is 2e. This indicates that the influence of outliers on
quadratic error metric increases linearly and without bound. The
derivative of the Pearson type-VII error metric ln((1 + e2)1/2),
on the other hand, is e/(1 + e2). Therefore, the influence of
outliers on Pearson type-VII error is bounded.

IV. PROPOSED METHOD

Based on the above theory, the proposed method can be
described as follows. Given images f and g, the correspond-
ing phase moments ρf and ρg are computed as described in
Section III-B. At each iteration k, random solution candidates
Tk

1 , . . . , T k
n are generated from the solution space S based on

the adaptive sampling density pk
∗ proposed in Section III-A.

The generated solution candidates Tk
1 , . . . , T k

n are evaluated
based on the cumulative Pearson type-VII error between the
phase moments of the images being registered as described in
Section III-B to determine the best solution T̂ k from the set of
generated solution candidates. This process is repeated until the
termination criteria are satisfied to obtain the solution T̂ .

A multiresolution scheme involving three different scales
(s = (1/4), (1/2), 1) was used to improve convergence speed.
For testing purposes, 100 solution candidates are generated
and evaluated at each iteration of the proposed method, and
for the case of affine transformations (tmin

1 , tmax
1 , tmin

2 , tmax
2 ,

tmin
3 , tmax

3 ) = (−(2w/3), (2w/3), −(2h/3), (2h/3), 0, 2π)

represents translation along x- and y-axis, and rotation, re-
spectively, and w and h are the width and height of the ref-
erence image, respectively, and (tmin

4 , tmax
4 , tmin

5 , tmax
5 , tmin

6 ,
tmax
6 , tmin

7 , tmax
7 ) = (0.8, 1.2, 0.8, 1.2, 0, 0.2, 0, 0.2) represents

scale and shear along x- and y-axis, respectively.

V. EXPERIMENTAL RESULTS

The proposed method was implemented in MATLAB and
evaluated in two different experiments, using real medical image
sets obtained from the National Library of Medicine visible
human project (VHP) and whole brain atlas (WBA) [34]. A
summary of each image set is given below.

1) BRAIN: Brain, axial, 1 mm resolution, T1-T2.
2) PELVIS: Pelvis, coronal, 1.875 mm resolution, T1-T2.
3) TORSO: Torso, coronal, 1.875 mm resolution, T1-T2.
4) BPET: Brain, sagittal, 1 mm resolution, T1-PET.
5) BCT: Brain, axial, 1 mm resolution, proton density

(PD)-CT.

A. Experiment 1

The first set of experiments test, the registration accuracy of
the proposed method, using all five of the image sets. Each image
set was distorted, using 30 randomly generated affine transfor-
mations, resulting in a total of 150 test cases. Since the original
image sets were aligned, the gold-standard transformations are
known for all 150 tests. For comparison purposes, state-of-the-
art methods, such as normalized mutual information (NMI),
phase mutual information (PMI) [14], least-squares intensity
remapping (LSIR) [26], as well as a NMC approach were also
tested for each of the 150 test cases. To evaluate the registration
accuracy of the methods under test, the rmse for 30 ground-
truth control point pairs was computed. Both the NMI and PMI
methods were implemented, using smoothed histograms with
64 intensity bins within a multiresolution framework involv-
ing three different scales (s = (1/4), (1/2), 1). Furthermore, to
ensure a fair comparison, a common sequential quadratic pro-
gramming [29] local optimization scheme is used for all tested
methods. Finally, a multiresolution scheme involving three dif-
ferent scales (s = (1/4), (1/2), 1) was used to improve conver-
gence speed for the tested methods.

The registration accuracy results for the first set of experi-
ments are summarized in Table I. It can be observed that both
the NMC approach and the proposed method achieved lower
rmse than all of the other tested methods for all of the test cases.
The high rmse results associated with the NMI and PMI meth-
ods, is largely due to high monotonicity along the convergence
plane as a result of the underconstrained nature of such meth-
ods. This high monotonicity along the convergence plane causes
iterative optimization methods to be trapped in local minima,
and thus, unable to converge to the global minima. As such, the
NMI and PMI methods only work well when the initial align-
ment is reasonably close to the global optima in the first place.
However, the underlying goal of automatic image registration is
to not rely on good initial alignments and to be able to converge
to the global optimal given any initial conditions. The NMC
approach and the proposed method avoid the issues associated
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TABLE I
REGISTRATION ACCURACY FOR EXPERIMENT 1

Fig. 1. BPET: (a) misaligned MRI T1 and PET images, (b) aligned using
proposed method. It can be observed that successful registration was achieved
despite the lack of region overlap.

Fig. 2. BCT: (a) misaligned MRI PD and CT images, (b) aligned using pro-
posed method. It can be observed that successful registration was achieved
despite the lack of region overlap.

with local optima along the convergence plane faced by itera-
tive optimization methods, since they do not rely on local cost
gradients to guide it toward the global optima like the NMI and
PMI methods. Therefore, these methods do not require good
initialization since the initial alignment of the images does not
affect its ability to determine the global optima.

Examples of T1-PET and CT-PD registration achieved using
the proposed method for situations characterized by little to no
region overlap between the images are shown in Figs. 1 and 2,
respectively. It can be observed that in both cases, the proposed
method is able to achieve good registration results. These results
illustrate the effectiveness of the proposed method for register-
ing images acquired, using different imaging modalities.

B. Experiment 2

The second set of experiments investigates the efficiency of
the proposed method, using image sets TORSO, BPET, and BCT

Fig. 3. Efficiency of the tested methods over various ranges of distortions. It
can be observed that the number of solution candidates tested remains relatively
constant over all ranges of distortions for the NMC method and the proposed
method, with the NMC method evaluating a noticeably higher quantity of so-
lution candidates. Furthermore, it can be observed that the average number of
solution candidates evaluated for the tested NMI and PMI methods are no-
ticeably higher than that evaluated by the proposed method for all ranges of
distortion.

under situations characterized by large misregistrations and little
to no region overlap between the images. Each of the image sets
were distorted, using 30 randomly generated transformations
over 12 ranges of x and y translation and rotation, ranging from
5% to 60% of the x and y image dimensions and rotation. This
results in a total of 360 test cases. The proposed method was
then performed on each test case and the average number of
solution candidates tested by the proposed method to achieve
convergence for each range of distortion, was measured. For
comparison purposes, the NMI, PMI, and NMC methods were
also evaluated. This set of experiments is designed to justify
the claim that the proposed method maintains efficiency under
situations characterized by large misregistrations and little to no
region overlap.

A plot of the number of solution candidates evaluated with
respect to increasing levels of misregistration is shown in Fig. 3.
It can be observed that the quantity of solution candidates eval-
uated for both the NMC approach and the proposed method
remains largely constant for all ranges. However, the quantity
of solution candidates evaluated by the NMC approach is no-
ticeably higher than that evaluated by the proposed method,
thus validating the efficiency gained by using an adaptive
Monte Carlo approach. Furthermore, it can be observed that the
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average number of solution candidates evaluated for the tested
NMI and PMI methods are noticeably higher than that evaluated
by the proposed method for all ranges of distortion. Therefore,
these results reinforce the claim that the proposed method is
able to maintain efficiency under situations characterized by
large misregistrations and little to no region overlap.

VI. CONCLUSION

In this paper, we introduced a novel method for registering
images from different imaging modalities, using an adaptive
Monte Carlo scheme. An adaptive sampling scheme was in-
troduced for generating plausible solution candidates from the
solution space of possible transformations. An objective func-
tion for solution candidate evaluation was introduced, based on
the Pearson type-VII error between the phase moments of the
images being registered. The proposed method is highly efficient
and addresses issues associated with large misregistrations and
little to no region overlap between images. Experimental results
using real multimodal image sets indicate that high-registration
accuracy can be achieved. Future study involves investigating
alternate adaptive sampling density models to reduce computa-
tional complexity while improving solution candidate plausibil-
ity. Furthermore, we intend on extending the proposed method
for true 3-D image registration.
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